
Red Hat Satellite 6.1

Puppet Guide

A guide to building your own Puppet module and importing it into Satellite
6

Edition 1

Last Updated: 2018-01-29

Red Hat Satellite 6.1 Puppet Guide
A guide to building your own Puppet module and importing it into Satellite 6
Edition 1

Red Hat Satellite Documentation Team
Red Hat Customer Content Services

Legal Notice
Copyright © 2015 Red Hat.

This document is licensed by Red Hat under the Creative Commons Attribution-
ShareAlike 3.0 Unported License. If you distribute this document, or a modified version
of it, you must provide attribution to Red Hat, Inc. and provide a link to the original. If
the document is modified, all Red Hat trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to
assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the
Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other
countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the
United States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European
Union and other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally
related to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered
trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in
the United States and other countries and are used with the OpenStack Foundation's
permission. We are not affiliated with, endorsed or sponsored by the OpenStack
Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
Puppet is a system configuration tool used in Red Hat Satellite 6. This book runs
through the creation of a basic Puppet Module and how to use this module in your Red
Hat Satellite 6 infrastructure.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

Table of Contents
CHAPTER 1. OVERVIEW

1.1. DEFINING THE PUPPET WORKFLOW
1.2. USING PUPPET ON SATELLITE 6

CHAPTER 2. BUILDING PUPPET MODULES FROM SCRATCH
2.1. EXAMINING THE ANATOMY OF A PUPPET MODULE
2.2. SETTING UP A PUPPET DEVELOPMENT SYSTEM
2.3. GENERATING A NEW MODULE BOILERPLATE
2.4. INSTALLING A HTTP SERVER
2.5. RUNNING THE HTTP SERVER
2.6. CONFIGURING THE HTTP SERVER
2.7. CONFIGURING THE FIREWALL
2.8. CONFIGURING SELINUX
2.9. COPYING A HTML FILE TO THE WEB HOST
2.10. FINALIZING THE MODULE

CHAPTER 3. ADDING PUPPET MODULES TO RED HAT SATELLITE 6
3.1. CREATING A CUSTOM PRODUCT
3.2. CREATING A PUPPET REPOSITORY IN A CUSTOM PRODUCT
3.3. UPLOADING A PUPPET MODULE TO A REPOSITORY
3.4. REMOVING A PUPPET MODULE FROM A REPOSITORY
3.5. ADDING PUPPET MODULES FROM A GIT REPOSITORY
3.6. PUBLISHING A CONTENT VIEW
3.7. CONFIGURING SMART VARIABLES FROM PUPPET CLASSES

CHAPTER 4. CLIENT AND SERVER SETTINGS FOR CONFIGURATION MANAGEMENT
4.1. CONFIGURING PUPPET ON THE RED HAT SATELLITE SERVER
4.2. CONFIGURING PUPPET AGENT ON PROVISIONED SYSTEMS

CHAPTER 5. APPLYING CONFIGURATION ON CLIENTS
5.1. APPLYING CONFIGURATION ON CLIENTS DURING PROVISIONING
5.2. APPLYING CONFIGURATION TO EXISTING CLIENTS

CHAPTER 6. REVIEWING PUPPET REPORTS IN RED HAT SATELLITE 6

APPENDIX A. REVISION HISTORY

3
3
3

4
4
5
5
6
7
8

10
12
13
14

15
15
15
16
16
16
18
19

22
22
22

24
24
25

28

29

Table of Contents

1

Puppet Guide

2

CHAPTER 1. OVERVIEW
Puppet is a tool for applying and managing system configurations. Puppet collects system
information, or facts, and uses this information to create a customized system
configuration using a set of modules. These modules contain parameters, conditional
arguments, actions, and templates. Puppet is used as either a local system command line
tool or in a client-server relationship where the server acts as the Puppet master and
applies configuration to multiple client systems using a Puppet agent. This provides a way
to automatically configure newly provisioned systems, either individually or simultaneously
to create a specific infrastructure.

1.1. DEFINING THE PUPPET WORKFLOW
Puppet uses the following workflow to apply configuration to a system.

1. Collect facts about each system. These facts can include hardware, operating
systems, package versions, and other information. The Puppet agent on each
system collects this information and sends it to the Puppet master.

2. The Puppet master generates a custom configuration for each system and sends it
to the Puppet agent. This custom configuration is called a catalog.

3. The Puppet agent applies the configuration to the system.

4. The Puppet agent sends a report back to the Puppet master that indicates the
changes applied and if any changes were unsuccessful.

5. Third-party applications can collect these reports using Puppet's API.

1.2. USING PUPPET ON SATELLITE 6
Satellite 6 uses Puppet in several ways:

Satellite 6 imports Puppet modules used to define the system configuration. This
includes control over module versions and their environments.

Satellite 6 imports sets of parameters, also known as Puppet class parameters, from
Puppet modules. Users can accept the default values from Puppet classes or provide
their own at a global or system-specific level.

Satellite 6 triggers the execution of Puppet between the master and the respective
agents on each system. Puppet runs can occur either:

Automatically, such as after the provisioning process completes or as a daemon
that checks and manages the machine's configuration over its lifecycle.

Manually, such as needing to trigger an immediate Puppet run.

Satellite 6 collects reports from Puppet after the configuration workflow completes.
This helps with auditing and archiving system configuration over long term periods.

These functions provide an easy way for users to control system configuration aspects of
the application lifecycle using Puppet.

CHAPTER 1. OVERVIEW

3

CHAPTER 2. BUILDING PUPPET MODULES FROM
SCRATCH
This chapter explores how to build and test your own Puppet modules. This includes a basic
tutorial on creating a Puppet module that deploys a simple web server configuration.

2.1. EXAMINING THE ANATOMY OF A PUPPET MODULE
Before creating our module, we need to understand the components that create a Puppet
module.

Manifests
Manifests are files that contain code to define a set of resource and their attributes. A
resource is any configurable part of a system. Examples of resources include packages,
services, files, users and groups, SELinux configuration, SSH key authentication, cron
jobs, and more. A manifest defines each required resource using a set of key-value pairs
for their attributes. For example:

package { 'httpd':
 ensure => installed,
}

This declaration checks if the httpd package is installed. If not, the manifest executes
yum and installs it.

Manifests are located in the manifest directory of a module.

Puppet modules also use a test directory for test manifests. These manifests are used
to test certain classes contained in your official manifests.

Static Files
Modules can contain static files that Puppet can copy to certain locations on your
system. These locations, and other attributes such as permissions, are defined through
file resource declarations in manifests.

Static files are located in the files directory of a module.

Templates
Sometimes configuration files require custom content. In this situation, users would
create a template instead of a static file. Like static files, templates are defined in
manifests and copied to locations on a system. The difference is that templates allow
Ruby expressions to define customized content and variable input. For example, if you
wanted to configure httpd with a customizable port then the template for the
configuration file would include:

Listen <%= @httpd_port %>

The httpd_port variable in this case is defined in the manifest that references this
template.

Templates are located in the templates directory of a module.

Puppet Guide

4

Plugins
Plugins allow for aspects that extend beyond the core functionality of Puppet. For
example, you can use plugins to define custom facts, custom resources, or new
functions. For example, a database administrator might need a resource type for
PostgreSQL databases. This could help the database administrator populate PostgreSQL
with a set of new databases after installing PostgreSQL. As a result, the database
administrator need only create a Puppet manifest that ensures PostgreSQL installs and
the databases are created afterwards.

Plugins are located in the lib directory of a module. This includes a set of subdirectories
depending on the plugin type. For example:

/lib/facter - Location for custom facts.

/lib/puppet/type - Location for custom resource type definitions, which outline
the key-value pairs for attributes.

/lib/puppet/provider - Location for custom resource providers, which are used
in conjunction with resource type definitions to control resources.

/lib/puppet/parser/functions - Location for custom functions.

2.2. SETTING UP A PUPPET DEVELOPMENT SYSTEM
A Puppet development system is useful for creating and testing your own modules. It is
recommended to use a new system with a Red Hat Enterprise Linux 6 or 7 subscription.

After installing the new system and registering your version of Red Hat Enterprise Linux,
enable the Red Hat Satellite 6 Tools repository. For example, for Red Hat Enterprise Linux 7:

subscription-manager repos --enable=rhel-7-server-satellite-tools-6.1-
rpms

After enabling the repository, install the puppet package:

yum install puppet

2.3. GENERATING A NEW MODULE BOILERPLATE
The first step in creating a new module is to change to the Puppet module directory and
create a basic module structure. Either create this structure manually or use Puppet to
create a boilerplate for your module:

cd /etc/puppet/modules
puppet module generate [module-name]

An interactive wizard appears and guides you through populating the module's
metadata.json file with metadata.

CHAPTER 2. BUILDING PUPPET MODULES FROM SCRATCH

5

IMPORTANT

The puppet module generate command requires module-name take the
format of [username]-[module] to comply with Puppet Forge specifications.
However, to test our tutorial module and use it with Satellite 6 we need to
rename the module directory without the [username]. For example, for
dmacpher-mymodule you would run:

puppet module generate dmacpher-mymodule
mv dmacpher-mymodule mymodule

When the module generation process completes, the new modules contains some basic
files, including a manifests directory. This directory already contains a manifest file called
init.pp, which is the module's main manifest file. View the file to see the empty class
declaration for the module:

class mymodule {

}

The module also contains a tests directory containing a manifest also named init.pp. This
test manifest contains a reference to the mymodule class within manifests/init.pp:

include mymodule

Puppet will use this test manifest to test our module.

We are now ready to add our system configuration to our module.

2.4. INSTALLING A HTTP SERVER
Our Puppet module will install the packages necessary to run a HTTP server. This requires a
resource definition that defines configurations for the httpd package.

In the module's manifests directory, create a new manifest file called httpd.pp:

touch mymodule/manifests/httpd.pp

This manifest will contain all HTTP configuration for our module. For organizational
purposes, we will keep this manifest separate from the init.pp manifest.

Add the following content to the new httpd.pp manifest:

class mymodule::httpd {
 package { 'httpd':
 ensure => installed,
 }
}

This code defines a subclass of mymodule called httpd, then defines a package resource
declaration for the httpd package. The ensure => installed attribute tells Puppet to
check if the package is installed. If it is not installed, Puppet executes yum to install it.

Puppet Guide

6

We also need to include this subclass in our main manifest file. Edit the init.pp manifest:

class mymodule {
 include mymodule::httpd
}

It is now time to test the module. Run the following command:

puppet apply mymodule/tests/init.pp --noop

The puppet apply command applies the configuration in the manifest to your system. We
use the test init.pp manifest, which refers to the main init.pp manifest. The --noop
performs a dry-run of the configuration, which shows only the output but does not actually
apply the configuration. The output should resemble the following:

Notice: Compiled catalog for puppet.example.com in environment production
in 0.59 seconds
Notice: /Stage[main]/Mymodule::Httpd/Package[httpd]/ensure: current_value
absent, should be present (noop)
Notice: Class[Mymodule::Httpd]: Would have triggered 'refresh' from 1
events
Notice: Stage[main]: Would have triggered 'refresh' from 1 events
Notice: Finished catalog run in 0.67 seconds

The highlighted line is the result of the ensure => installed attribute. The
current_value absent means that Puppet has detected the httpd package is not
installed. Without the --noop option, Puppet would install the httpd package.

2.5. RUNNING THE HTTP SERVER
After installing the httpd package, we start the service using another resource declaration:
service.

Edit the httpd.pp manifest and add the highlighted lines:

class mymodule::httpd {
 package { 'httpd':
 ensure => installed,
 }
 service { 'httpd':
 ensure => running,
 enable => true,
 require => Package["httpd"],
 }
}

This achieves a couple of things:

The ensure => running attribute checks if the service if running. If not, Puppet
enables it.

The enable => true attribute sets the service to run when the system boots.

The require => Package["httpd"] attribute defines an ordering relationship

CHAPTER 2. BUILDING PUPPET MODULES FROM SCRATCH

7

between one resource declaration and another. In this case, it ensures the httpd
service starts after the httpd package installs. This creates a dependency between
the service and its respective package.

Run the puppet apply command again to test the changes to our module:

puppet apply mymodule/tests/init.pp --noop
Notice: Compiled catalog for puppet.example.com in environment production
in 0.56 seconds
Notice: /Stage[main]/Mymodule::Httpd/Package[httpd]/ensure: current_value
absent, should be present (noop)
Notice: /Stage[main]/Mymodule::Httpd/Service[httpd]/ensure: current_value
stopped, should be running (noop)
Notice: Class[Mymodule::Httpd]: Would have triggered 'refresh' from 2
events
Notice: Stage[main]: Would have triggered 'refresh' from 1 events
Notice: Finished catalog run in 0.41 seconds

The highlighted line is the result of our new resource definition for the httpd service.

2.6. CONFIGURING THE HTTP SERVER
The HTTP Server is now installed and enabled. The next step is to provide some
configuration. The HTTP server already provides some default configuration in
/etc/httpd/conf/httpd.conf, which provides a web host on port 80. We will add some
additional configuration to provide an additional web host on a user-specified port.

We use a template file to store our configuration content because the user-defined port
requires variable input. In our module, create a directory called templates and add a file
called myserver.conf.erb in the new directory. Add the following contents to the file:

Listen <%= @httpd_port %>
NameVirtualHost *:<%= @httpd_port %>
<VirtualHost *:<%= @httpd_port %>>
 DocumentRoot /var/www/myserver/
 ServerName <%= @fqdn %>
 <Directory "/var/www/myserver/">
 Options All Indexes FollowSymLinks
 Order allow,deny
 Allow from all
 </Directory>
</VirtualHost>

This template follows the standard syntax for Apache web server configuration. The only
difference is the inclusion of Ruby escape characters to inject variables from our module.
For example, httpd_port, which we use to specify the web server port.

Notice also the inclusion of fqdn, which is a variable that stores the fully qualified domain
name of the system. This is known as a system fact. System facts are collected from each
system prior to generating each respective system's Puppet catalog. Puppet uses the
facter command to gather these system facts and you can also run facter to view a list
of these facts.

Edit the httpd.pp manifest and add the highlighted lines:

Puppet Guide

8

class mymodule::httpd {
 package { 'httpd':
 ensure => installed,
 }
 service { 'httpd':
 ensure => running,
 enable => true,
 require => Package["httpd"],
 }
 file {'/etc/httpd/conf.d/myserver.conf':
 notify => Service["httpd"],
 ensure => file,
 require => Package["httpd"],
 content => template("mymodule/myserver.conf.erb"),
 }
 file { "/var/www/myserver":
 ensure => "directory",
 }
}

This achieves the following:

We add a file resource declaration for the server configuration file
(/etc/httpd/conf.d/myserver.conf). The content for this file is the
myserver.conf.erb template we created earlier. We also check the httpd package
is installed before adding this file.

We also add a second file resource declaration. This one creates a directory
(/var/www/myserver for our web server.

We also add a relationship between the configuration file and the httpd service
using the notify => Service["httpd"] attribute. This checks our configuration file
for any changes. If the file has changed, Puppet restarts the service.

We also need to include the httpd_port parameter in our main manifest file. Edit the
init.pp manifest and add the following line:

class mymodule (
 $http_port = 80
) {
 include mymodule::httpd
}

This sets the httpd_port parameter to a default value of 80. You can override this value
with the Satellite Server.

Run the puppet apply command again to test the changes to our module:

puppet apply mymodule/tests/init.pp --noop
Warning: Config file /etc/puppet/hiera.yaml not found, using Hiera
defaults
Notice: Compiled catalog for puppet.example.com in environment production
in 0.84 seconds
Notice: /Stage[main]/Mymodule::Httpd/File[/var/www/myserver]/ensure:
current_value absent, should be directory (noop)

CHAPTER 2. BUILDING PUPPET MODULES FROM SCRATCH

9

Notice: /Stage[main]/Mymodule::Httpd/Package[httpd]/ensure: current_value
absent, should be present (noop)
Notice:
/Stage[main]/Mymodule::Httpd/File[/etc/httpd/conf.d/myserver.conf]/ensure:
current_value absent, should be file (noop)
Notice: /Stage[main]/Mymodule::Httpd/Service[httpd]/ensure: current_value
stopped, should be running (noop)
Notice: Class[Mymodule::Httpd]: Would have triggered 'refresh' from 4
events
Notice: Stage[main]: Would have triggered 'refresh' from 1 events
Notice: Finished catalog run in 0.51 seconds

NOTE

The warning for the hiera.yaml file is safe to ignore.

The highlighted lines show the creation of the configuration file and our web host directory

2.7. CONFIGURING THE FIREWALL
The web server requires an open port so people can access the pages hosted on our web
server. The open problem is that different versions of Red Hat Enterprise Linux uses
different methods for controlling the firewall. For Red Hat Enterprise Linux 6 and below, we
use iptables. For Red Hat Enterprise Linux 7, we use firewalld.

This decision is something Puppet handles using conditional logic and system facts. For this
step, we add a statement to check the operating system and run the appropriate firewall
commands.

Add the following code inside your mymodule::http class:

 if $operatingsystemmajrelease <= 6 {
 exec { 'iptables':
 command => "iptables -I INPUT 1 -p tcp -m multiport --ports
${httpd_port} -m comment --comment 'Custom HTTP Web Host' -j ACCEPT &&
iptables-save > /etc/sysconfig/iptables",
 path => "/sbin",
 refreshonly => true,
 subscribe => Package['httpd'],
 }
 service { 'iptables':
 ensure => running,
 enable => true,
 hasrestart => true,
 subscribe => Exec['iptables'],
 }
 }
 elsif $operatingsystemmajrelease == 7 {
 exec { 'firewall-cmd':
 command => "firewall-cmd --zone=public --add-port=${httpd_port}/tcp
--permanent",
 path => "/usr/bin/",
 refreshonly => true,
 subscribe => Package['httpd'],

Puppet Guide

10

 }
 service { 'firewalld':
 ensure => running,
 enable => true,
 hasrestart => true,
 subscribe => Exec['firewall-cmd'],
 }
 }

This code performs the following:

Use the operatingsystemmajrelease fact to determine whether the operating
system is Red Hat Enterprise Linux 6 or 7.

If using Red Hat Enterprise Linux 6, declare an executable (exec) resource that runs
iptables and iptables-save to add a permanent firewall rule. The httpd_port
variable is used in-line to define the port to open. After the exec resource
completes, we trigger a refresh of the iptables service. To achieve this, we define a
service resource that includes the subscribe attribute. This attribute checks if any
there are any changes to another resource and, if so, performs a refresh. In this
case, it checks the iptables executable resource.

If using Red Hat Enterprise Linux 7, declare a similar executable resource that runs
firewall-cmd to add a permanent firewall rule. The httpd_port variable is also
used in-line to define the port to open. After the exec resource completes, we
trigger a refresh of the firewalld service but with a subscribe attribute pointing to
the firewall-cmd executable resource.

The code for both firewall executable resources contains refreshonly => true and
subscribe => Package['httpd'] attributes. This ensures the firewall commands
only run after the httpd installs. Without these attributes, subsequent runs will add
multiple instances of the same firewall rule.

Run the puppet apply command again to test the changes to our module. The following
example is a test of Red Hat Enterprise Linux 6:

puppet apply mymodule/tests/init.pp --noop
Warning: Config file /etc/puppet/hiera.yaml not found, using Hiera
defaults
Notice: Compiled catalog for puppet.example.com in environment production
in 0.82 seconds
Notice: /Stage[main]/Mymodule::Httpd/Exec[iptables]/returns: current_value
notrun, should be 0 (noop)
Notice: /Stage[main]/Mymodule::Httpd/Service[iptables]: Would have
triggered 'refresh' from 1 events
...

The highlighted lines show the execution of the firewall rule creation and the subsequent
service refresh as a result of the subscribe attribute.

CHAPTER 2. BUILDING PUPPET MODULES FROM SCRATCH

11

IMPORTANT

This configuration serves only as an example of using conditional statements.
If you aim to manage multiple firewall rules for your system in the future, it is
recommended to create a custom resource for firewalls. It is inadvisable to
use executable resources to constantly chain many Bash commands.

2.8. CONFIGURING SELINUX
SELinux restricts non-standard access to the HTTP server by default. If we define a custom
port, we need to add configuration that allows SELinux to grant access.

Puppet contains resource types to manage some SELinux functions, such as Booleans and
modules. However, we need to execute the semanage command to manage port settings.
This tool is a part of the policycoreutils-python package, which is not installed on Red
Hat Enterprise Linux systems by default.

Add the following code inside your mymodule::http class:

 exec { 'semanage-port':
 command => "semanage port -a -t http_port_t -p tcp ${httpd_port}",
 path => "/usr/sbin",
 require => Package['policycoreutils-python'],
 before => Service ['httpd'],
 subscribe => Package['httpd'],
 refreshonly => true,
 }
 package { 'policycoreutils-python':
 ensure => installed,
 }

This code performs the following:

The require => Package['policycoreutils-python'] attribute makes sure the
policycoreutils-python is installed prior to executing the command.

Puppet executes semanage to open a port using httpd_port as a variable.

The before => Service ['httpd'] makes sure to execute this command before
the httpd service starts. If httpd starts before the SELinux command, SELinux
denies access to the port and the service fails to start.

The code for the SELinux executable resource contains refreshonly => true and
subscribe => Package['httpd'] attributes. This ensures the SELinux commands
only run after the httpd installs. Without these attributes, subsequent runs result in
failure. This is because SELinux detects the port is already enabled and reports an
error.

Run the puppet apply command again to test the changes to our module.

puppet apply mymodule/tests/init.pp --noop
...
Notice: /Stage[main]/Mymodule::Httpd/Package[policycoreutils-
python]/ensure: current_value absent, should be present (noop)
...

Puppet Guide

12

Notice: /Stage[main]/Mymodule::Httpd/Exec[semanage-port]/returns:
current_value notrun, should be 0 (noop)
...
Notice: /Stage[main]/Mymodule::Httpd/Service[httpd]/ensure: current_value
stopped, should be running (noop)
...

Puppet installs policycoreutils-python first, then configures port access before starting
the httpd service.

2.9. COPYING A HTML FILE TO THE WEB HOST
The HTTP server configuration is now complete. This provides a platform for installing a
web-based application, which Puppet can also configure. For this example, however, we will
only copy over a simple index webpage to our web host.

Create file named index.html in the files directory. Add the following content to this file:

<html>
 <head>
 <title>Congratulations</title>
 <head>
 <body>
 <h1>Congratulations</h1>
 <p>Your puppet module has correctly applied your configuration.</p>
 </body>
</html>

Create manifest named app.pp in the manifests directory. Add the following content to
this file:

class mymodule::app {
 file { "/var/www/myserver/index.html":
 ensure => file,
 mode => 755,
 owner => root,
 group => root,
 source => "puppet:///modules/mymodule/index.html",
 require => Class["mymodule::httpd"],
 }
}

This new class contains a single resource declaration. This declaration copies a file from the
module's file directory from the Puppet server to the system and sets its permissions.
Additionally, the require attribute ensures the mymodule::http class completes
configuration successfully before we apply mymodule::app.

Finally, include this new manifest in our main init.pp manifest:

class mymodule (
 $http_port = 80
) {
 include mymodule::httpd
 include mymodule::app
}

CHAPTER 2. BUILDING PUPPET MODULES FROM SCRATCH

13

Run the puppet apply command again to test the changes to our module. The output
should resemble the following:

puppet apply mymodule/tests/init.pp --noop
Warning: Config file /etc/puppet/hiera.yaml not found, using Hiera
defaults
Notice: Compiled catalog for puppet.example.com in environment production
in 0.66 seconds
Notice: /Stage[main]/Mymodule::Httpd/Exec[iptables]/returns: current_value
notrun, should be 0 (noop)
Notice: /Stage[main]/Mymodule::Httpd/Package[policycoreutils-
python]/ensure: current_value absent, should be present (noop)
Notice: /Stage[main]/Mymodule::Httpd/Service[iptables]: Would have
triggered 'refresh' from 1 events
Notice: /Stage[main]/Mymodule::Httpd/File[/var/www/myserver]/ensure:
current_value absent, should be directory (noop)
Notice: /Stage[main]/Mymodule::Httpd/Package[httpd]/ensure: current_value
absent, should be present (noop)
Notice:
/Stage[main]/Mymodule::Httpd/File[/etc/httpd/conf.d/myserver.conf]/ensure:
current_value absent, should be file (noop)
Notice: /Stage[main]/Mymodule::Httpd/Exec[semanage-port]/returns:
current_value notrun, should be 0 (noop)
Notice: /Stage[main]/Mymodule::Httpd/Service[httpd]/ensure: current_value
stopped, should be running (noop)
Notice: Class[Mymodule::Httpd]: Would have triggered 'refresh' from 8
events
Notice:
/Stage[main]/Mymodule::App/File[/var/www/myserver/index.html]/ensure:
current_value absent, should be file (noop)
Notice: Class[Mymodule::App]: Would have triggered 'refresh' from 1 events
Notice: Stage[main]: Would have triggered 'refresh' from 2 events
Notice: Finished catalog run in 0.74 seconds

The highlighted line shows the result of the index.html file being copied to the webhost.

2.10. FINALIZING THE MODULE
Our module is ready for use. To export the module into an archive for Red Hat Satellite 6 to
use, run the following command:

puppet module build mymodule

This creates an archive file at mymodule/pkg/mymodule-0.1.0.tar.gz, which contains the
contents of our mymodule directory. We upload this module to our Red Hat Satellite 6 server
to provision our own HTTP server.

Puppet Guide

14

CHAPTER 3. ADDING PUPPET MODULES TO RED HAT
SATELLITE 6
Puppet modules form a part of a product in Red Hat Satellite 6. This means you must create
a custom product and then upload the modules that form the basis of that product. For
example, a custom product might consist of a set of Puppet modules required to setup a
HTTP server, a database, and a custom application. Custom products can also include
repositories with RPM packages that apply to your application.

3.1. CREATING A CUSTOM PRODUCT
The first step to adding our Puppet module is to create a custom product.

Procedure 3.1. Creating a Custom Product

1. Login to your Red Hat Satellite 6 server.

2. Navigate to Content → Products.

3. Click + New Product.

4. Provide your custom product with a Name. In this example, use MyProduct as the
name.

5. The Label field automatically populates with a label based on the Name.

6. Provide a GPG Key, Sync Plan, and a Description if required. For our example,
leave those fields blank.

7. Click Save.

Satellite now has a new product called MyProduct.

3.2. CREATING A PUPPET REPOSITORY IN A CUSTOM
PRODUCT
The next procedure creates a Puppet repository in our custom product.

Procedure 3.2. Creating a Custom Puppet Repository

1. On the Products page, click on the custom product created previously (MyProduct).

2. Navigate to the Repositories subtab.

3. Click Create Repository.

4. Provide the repository with a Name. This example uses the name MyRepo.

5. The Label field automatically populates with a label based on the Name.

6. Select puppet as the repository Type.

7. Leave the URL field blank. This field is used for remote repositories, but in our case
Satellite 6 creates its own repository.

CHAPTER 3. ADDING PUPPET MODULES TO RED HAT SATELLITE 6

15

8. Click Save.

The custom product now contains a repository to store our Puppet modules.

3.3. UPLOADING A PUPPET MODULE TO A REPOSITORY
Now we upload our mymodule module to the newly created repository, which adds it to our
custom product.

1. Click the Name of the newly created repository.

2. In the Upload Puppet Module section, click Browse and select the mymodule
archive.

3. Click Upload.

You can upload more modules to this repository. For our example, we only need to upload
the mymodule module.

Our Puppet module is now a part of your Red Hat Satellite 6 environment. Next we publish
the module as part of a content view.

3.4. REMOVING A PUPPET MODULE FROM A REPOSITORY
If you aim to remove redundant modules from custom repositories in the future, use the
Manage Puppet Modules feature.

1. On the Products page, click on the custom product containing the module to
remove.

2. Click the Name of the repository containing the module to remove.

3. Click Manage Puppet Modules. The screen displays a list of Puppet modules
contained within the repository.

4. Select the modules to remove.

5. Click Remove Puppet Modules.

Satellite removes the chosen modules from your repository.

3.5. ADDING PUPPET MODULES FROM A GIT REPOSITORY
As an alternative to manually uploading modules, Red Hat Satellite 6 includes a utility
called pulp-puppet-module-builder. This tool checks out repositories containing a set of
modules, builds the modules, and publishes them in a structure for Satellite 6 to
synchronize. This provides an efficient way to manage module development in Git and
include them in the Satellite 6 workflow.

NOTE

You can also install the pulp-puppet-module-builder tool on other machines
using the pulp-puppet-tools package.

Puppet Guide

16

One common method is to run the utility on the Satellite 6 server itself and publish to a
local directory.

Procedure 3.3. Publishing Git Repository to a Local Directory

1. Create a directory on the Satellite server to synchronize the modules.

mkdir /modules
chmod 755 /modules

2. Run the pulp-puppet-module-builder and checkout the Git repository.

pulp-puppet-module-builder --output-dir=/modules --
url=git@mygitserver.com:mymodules.git --branch=develop

This checks out the develop branch of the Git repository from
git@mygitserver.com:mymodules.git and publishes the modules to /modules.

The same procedure applies to publishing modules to a HTTP server.

Procedure 3.4. Publishing Git Repository to a Web Server

1. Create a directory on the web server to synchronize the modules.

mkdir /var/www/html/modules
chmod 755 /var/www/html/modules/

2. Run the pulp-puppet-module-builder and checkout the Git repository.

pulp-puppet-module-builder --output-dir=/var/www/html/modules/ --
url=git@mygitserver.com:mymodules.git --branch=develop

This checks out the develop branch of the Git repository from
git@mygitserver.com:mymodules.git and publishes the modules to /modules.

In the Satellite 6 Web UI, create a new repository with the URL set to the location of your
published modules.

Procedure 3.5. Creating a Repository for Puppet Modules from Git

1. On the Products page, click on the custom product created previously (MyProduct).

2. Navigate to the Repositories subtab.

3. Click Create Repository.

4. Provide the repository with a Name. This example uses the name MyGitRepo.

5. The Label field automatically populates with a label based on the Name.

6. Select puppet as the repository Type.

7. In the URL field, set the location you defined earlier. For example, local directories
on the Satellite 6 server use the file:// protocol:

CHAPTER 3. ADDING PUPPET MODULES TO RED HAT SATELLITE 6

17

file:///modules

A remote repository uses the http:// protocol:

http://webserver.example.com/modules/

8. Click Save.

9. Click Sync Now to synchronize the repository.

The Puppet modules in the Git repository are now included in your Satellite 6 server.

3.6. PUBLISHING A CONTENT VIEW
The final step to getting our Puppet module ready for consumption is to publish it as part of
a content view. You can add this module to an existing view but for our example we will
create a new view.

Procedure 3.6. Publishing a Content View

1. Navigate to Content → Content Views.

2. Click + Create New View.

3. Provide your view with a Name. In this example, we use MyView as the name.

4. The Label field automatically populates with a label based on the Name.

5. Make sure Composite View is not selected.

6. Click Save.

7. Select the Name of your newly created view.

8. Navigate to Content → Repositories.

9. Add the required Red Hat Enterprise Linux repositories, including a base Red Hat
Enterprise Linux Server RPM collection and a Red Hat Satellite Tools RPM collection
for the same version. The Tools RPM collection contains the packages to set up our
remote Puppet configuration on provisioned systems.

10. Navigate to Puppet Modules.

11. Click + Add New Module.

12. Scroll to your module and click Select a Version.

13. Scroll to the module version Use Latest and click Select Version.

14. Our module is now a part of the content view. Navigate to Versions to publish and
promote a new version of the content view.

15. Click Publish New Version. On the Publish New Version page, click Save. This
publishes the content view with our module.

Puppet Guide

18

16. Scroll to the new version of our view and click Promote. Choose a lifecycle
environment and click Promote Version. This makes the view a part of the chosen
lifecycle environment.

Our content view is now published. As a part of the content view creation, Red Hat Satellite
6 creates a new Puppet environment for use in the provisioning process. This puppet
environment contains our module. You can view this new Puppet environment on the
Configure → Environments page.

3.7. CONFIGURING SMART VARIABLES FROM PUPPET
CLASSES
Some module classes contain variable parameters. Satellite 6 has the ability to import
classes and allow modification of such parameters. This is called a smart variable.

For example, mymodule contains a parameter for the HTTP port of our web server. This
parameter, httpd_port, is set to a default of 8120. However, a situation might occur where
we need to use a different port for a provisioned system. Satellite 6 can convert the
httpd_port parameter into a smart variable, override it, and send it back to the system
during configuration. This provides an easy way to change the HTTP port on our webserver.

This procedure requires the mymodule module uploaded to a product and added to a
content view. This is because we need to edit the classes in the resulting Puppet
environment.

1. Navigate to Configure → Smart variables.

2. A table appears listing all smart variables from the classes in your Puppet modules.
Click on the httpd_port variable.

3. The options for the smart variable appears. To allow overriding this variable during
provisioning, select the Override option.

4. Selecting the Override option allows us to change the Parameter type and
Default value. This is useful if we aim to globally change this value for all future
configurations.

The following parameter types are available:

String
The value is interpreted as a plain text string. For example, if your smart variable
sets the hostname, the value is interpreted as a string:

myhost.example.com

Boolean
The value is interpreted and validated as a true or false value. Examples include:

True
true
1

Integer

CHAPTER 3. ADDING PUPPET MODULES TO RED HAT SATELLITE 6

19

The value is interpreted and validated as an integer value. Examples include:

8120
-8120

Real
The value is interpreted and validated as a real number value. Examples include:

8120
-8120
8.12

Array
The value is interpreted and validated as a JSON or YAML array. For example:

["Monday","Tuesday","Wednesday","Thursday","Friday"]

Hash
The value is interpreted and validated as a JSON or YAML hash map. For example:

{"Weekdays": ["Monday","Tuesday","Wednesday","Thursday","Friday"],
"Weekend": ["Saturday","Sunday"]}

YAML
The value is interpreted and validated as a YAML file. For example:

email:
 delivery_method: smtp
 smtp_settings:
 address: smtp.example.com
 port: 25
 domain: example.com
 authentication: none

JSON
The value is interpreted and validated as a JSON file. For example:

{
 "email":[
 {
 "delivery_method": "smtp"
 "smtp_settings": [
 {
 "address": "smtp.example.com",
 "port": 25,
 "domain": "example.com",
 "authentication": "none"
 }
]

Puppet Guide

20

 }
]
}

For this example, leave the default as 8120.

5. Selecting the Override option also exposes Optional Input Validator, which
provides validation for the overridden value. For example, we can include a regular
expression to make sure httpd_port is a numerical value. For our example, leave
this section blank.

6. Selecting the Override option also exposes Override Value For Specific Hosts,
which defines a hierarchical order of system facts and a set of matcher-value
combinations. The matcher-value combinations determine the right parameter to
use depending on an evaluation of the system facts. For our example, leave this
section with the default settings.

7. Click Submit.

We now have a smart variable for httpd_port. We can set a value for this smart variable at
either a Host Group level or at a Host level.

CHAPTER 3. ADDING PUPPET MODULES TO RED HAT SATELLITE 6

21

CHAPTER 4. CLIENT AND SERVER SETTINGS FOR
CONFIGURATION MANAGEMENT
An important part of Red Hat Satellite 6's configuration process is making sure the Puppet
clients (called Puppet agents) can communicate with the Puppet server (called Puppet
master) on either the internal Satellite Capsule or an external Satellite Capsule. This
chapter examines how Red Hat Satellite 6 configures both the Puppet master and the
Puppet agent.

4.1. CONFIGURING PUPPET ON THE RED HAT SATELLITE
SERVER
Red Hat Satellite 6 controls the main configuration for the Puppet master on all Satellite
Capsules. No additional configuration is required and it is recommended to avoid manually
modify these configuration files. For example, the main /etc/puppet.conf configuration
file contains the following [master] section:

[master]
 autosign = $confdir/autosign.conf { mode = 664 }
 reports = foreman
 external_nodes = /etc/puppet/node.rb
 node_terminus = exec
 ca = true
 ssldir = /var/lib/puppet/ssl
 certname = sat6.example.com
 strict_variables = false

 manifest =
/etc/puppet/environments/$environment/manifests/site.pp
 modulepath = /etc/puppet/environments/$environment/modules
 config_version =

This section contains variables (such as $environment) that Satellite 6 uses to create
configuration for different environments.

Some Puppet configuration options appear in the Satellite 6 UI. Navigate to Administer →
Settings and choose the Puppet subtab. This page lists a set of Puppet configuration
options and a description of each.

4.2. CONFIGURING PUPPET AGENT ON PROVISIONED
SYSTEMS
As part of the provisioning process, Satellite 6 installs Puppet to the system. This process
also installs /etc/puppet/puppet.conf file that configures Puppet as an agent of the
Puppet master on a chosen Capsule. This configuration file is stored as a provisioning
template snippet in Satellite 6. Navigate to Hosts → Provisioning templates and click the
puppet.conf snippet to view it.

The default puppet.conf snippet contains the following agent configuration:

[agent]
pluginsync = true
report = true

Puppet Guide

22

ignoreschedules = true
daemon = false
ca_server = <%= @host.puppet_ca_server %>
certname = <%= @host.certname %>
environment = <%= @host.environment %>
server = <%= @host.puppetmaster %>

This snippet contains some template variables, which are:

@host.puppet_ca_server and @host.certname - The certificate and certificate
authority for securing Puppet communication.

@host.environment - The Puppet environment on the Satellite 6 server to use for
configuration.

@host.puppetmaster - The host containing the Puppet master. This is either the
Satellite 6 server's internal Capsule or an external Satellite Capsule.

CHAPTER 4. CLIENT AND SERVER SETTINGS FOR CONFIGURATION MANAGEMENT

23

CHAPTER 5. APPLYING CONFIGURATION ON CLIENTS
At this point, Satellite 6 server's Puppet ecosystem is configured and contains the mymodule
module. We now aim to apply this module's configuration to a registered system.

5.1. APPLYING CONFIGURATION ON CLIENTS DURING
PROVISIONING
We first define a new host's Puppet configuration using the following procedure. This
procedure uses the uploaded mymodule as an example.

Procedure 5.1. Applying Configuration on Clients During Provisioning

1. Navigate to Hosts → New host.

2. Click the Host tab. Enter a Name for the host and choose the organization and
location for the system. Choose the Lifecycle Environment and its promoted
Content View. This defines the Puppet environment to use for the configuration.
Also choose a Puppet CA and Puppet Master from the Capsule Settings. The
chosen capsule acts as the server that controls the configuration and communicates
with the agent on the new host.

3. Click the Puppet Classes tab and from the Available Classes section choose the
Puppet classes that contain the configuration to apply. In our example, choose:

mymodule

mymodule:httpd

mymodule:app

4. Choose the necessary options from the Network and Operating System tabs. These
options depend on your own Satellite 6 infrastructure. Make sure the Provisioning
templates option includes the Satellite Kickstart Default kickstart template.
This template contains installation commands for the Puppet agent on the new host.

5. Click the Parameters tab and provide any custom overrides to our Puppet class
parameters. For example, modify the httpd_port from the mymodule to set your
own custom port.

6. After completing all provisioning options, click Submit.

The provisioning process begins. Satellite 6 installs the required configuration tools as part
of the Satellite Kickstart Default provisioning template. This provisioning template
contains the following:

<% if puppet_enabled %>
and add the puppet package
yum -t -y -e 0 install puppet

echo "Configuring puppet"
cat > /etc/puppet/puppet.conf << EOF
<%= snippet 'puppet.conf' %>
EOF

Puppet Guide

24

Setup puppet to run on system reboot
/sbin/chkconfig --level 345 puppet on

/usr/bin/puppet agent --config /etc/puppet/puppet.conf -o --tags
no_such_tag <%= @host.puppetmaster.blank? ? '' : "--server #
{@host.puppetmaster}" %> --no-daemonize
<% end -%>

This section performs the following:

Installs the puppet package from the Red Hat Satellite 6 Tools RPMs repository.

Installs the Puppet configuration snippet to the system at
/etc/puppet/puppet.conf.

Enables the Puppet service to run on the system.

Run Puppet for the first time and apply the system configuration.

After the provisioning and configuration processes complete on the new host, access the
host and user-defined port in your web browser. For example, navigate to
http://newhost.example.com:8120/ and the following message appears in your browser:

Congratulations

Your puppet module has correctly applied your configuration.

5.2. APPLYING CONFIGURATION TO EXISTING CLIENTS
You might aim to have Puppet configuration applied to an existing client not provisioned
through Red Hat Satellite 6. In this situation, install and configure Puppet on the existing
client after registering it to Red Hat Satellite 6.

Register your existing system to Red Hat Satellite 6. For information on registering existing
hosts, see 12.3.1. Registering a Host in the Red Hat Satellite 6.1 User Guide.

IMPORTANT

The puppet package is part of the Red Hat Satellite 6 Tools repository. Ensure
you enable this repository before you proceed.

Procedure 5.2. To Install and Enable the Puppet Agent:

1. Open a terminal console and log in as root.

2. Install the Puppet agent:

yum install puppet

3. Configure the puppet agent to start at boot:

On Red Hat Enterprise Linux 6:

chkconfig puppet on

CHAPTER 5. APPLYING CONFIGURATION ON CLIENTS

25

https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/6.1/html/User_Guide/sect-Red_Hat_Satellite-User_Guide-Configuring_Hosts-Registration.html#sect-Red_Hat_Satellite-User_Guide-Registering_a_Host

On Red Hat Enterprise Linux 7:

systemctl enable puppet

Procedure 5.3. Configuring the Puppet Agent

1. Configure the Puppet agent by changing the /etc/puppet/puppet.conf file:

vi /etc/puppet/puppet.conf

[main]
 # The Puppet log directory.
 # The default value is '$vardir/log'.
 logdir = /var/log/puppet

 # Where Puppet PID files are kept.
 # The default value is '$vardir/run'.
 rundir = /var/run/puppet

 # Where SSL certificates are kept.
 # The default value is '$confdir/ssl'.
 ssldir = $vardir/ssl

[agent]
 # The file in which puppetd stores a list of the classes
 # associated with the retrieved configuratiion. Can be loaded
in
 # the separate ``puppet`` executable using the ``--loadclasses``
 # option.
 # The default value is '$confdir/classes.txt'.
 classfile = $vardir/classes.txt
 pluginsync = true
 report = true
 ignoreschedules = true
 daemon = false
 ca_server = satellite.example.com
 server = satellite.example.com
 environment = KT_Example_Org_Library_RHEL6Server_3

 # Where puppetd caches the local configuration. An
 # extension indicating the cache format is added automatically.
 # The default value is '$confdir/localconfig'.
 localconfig = $vardir/localconfig

IMPORTANT

Set the environment parameter to the host's Puppet environment from
the Satellite server. The Puppet environment label contains the
organization label, lifecycle environment, content view name, and the
content view ID. To see a list of Puppet environments in the Satellite 6
web UI, navigate to Configure → Environments.

Puppet Guide

26

2. Run the Puppet agent on the host:

puppet agent -t --server satellite.example.com

3. Sign the SSL certificate for the puppet client through the Satellite Server web
interface:

a. Log in to the Satellite Server through the web interface.

b. Select Infrastructure → Capsules.

c. Click Certificates to the right of the required host.

d. Click Sign.

e. Rerun the puppet agent command:

puppet agent -t --server satellite.example.com

NOTE

When the Puppet agent is configured on the host it will be listed under All
Hosts but only when Any Context is selected as the host will not be assigned
to an organization or location.

CHAPTER 5. APPLYING CONFIGURATION ON CLIENTS

27

CHAPTER 6. REVIEWING PUPPET REPORTS IN RED
HAT SATELLITE 6
Puppet generates a report each time it applies configuration. Provisioned hosts send this
report to the Red Hat Satellite 6 server. View these reports on the hosts details page.

Procedure 6.1. Reviewing Puppet Reports in Red Hat Satellite 6

1. Navigate to Hosts → All hosts.

2. Click the Name of your desired host.

3. Click the Reports button.

4. Select a report to view.

Each report shows the status of each Puppet resource and its configuration applied to the
host.

Puppet Guide

28

APPENDIX A. REVISION HISTORY
Revision 1.3-3 Tue Sep 6 2016 Dan Macpherson

BZ#1290076 - Adding missing httpd port.

Revision 1.3-2 Wed May 11 2016 Peter Ondrejka
BZ#1334868 - Updated the syntax for ServerName in the HTTP server example.

Revision 1.3-1 Mon Oct 12 2015 Hayley Hudgeons
BZ 1253895: Typo in puppet guide
Building for async 1

Revision 1.1-1 Wed Aug 26 2015 Dan Macpherson
Added Puppet Module Removal instructions
Added Puppet Agent installation and configuration for existing hosts

Revision 1.0-2 Tue Jul 14 2015 David O'Brien
Rebuild for technical review.

Revision 1.0-1 Sun Jun 14 2015 David O'Brien
6.1 Public Beta release.

Revision 1.0-0 Fri Jun 12 2015 Dan Macpherson
Initial creation of book

APPENDIX A. REVISION HISTORY

29

https://bugzilla.redhat.com/1290076
https://bugzilla.redhat.com/1334868

	Table of Contents
	CHAPTER 1. OVERVIEW
	1.1. DEFINING THE PUPPET WORKFLOW
	1.2. USING PUPPET ON SATELLITE 6

	CHAPTER 2. BUILDING PUPPET MODULES FROM SCRATCH
	2.1. EXAMINING THE ANATOMY OF A PUPPET MODULE
	2.2. SETTING UP A PUPPET DEVELOPMENT SYSTEM
	2.3. GENERATING A NEW MODULE BOILERPLATE
	2.4. INSTALLING A HTTP SERVER
	2.5. RUNNING THE HTTP SERVER
	2.6. CONFIGURING THE HTTP SERVER
	2.7. CONFIGURING THE FIREWALL
	2.8. CONFIGURING SELINUX
	2.9. COPYING A HTML FILE TO THE WEB HOST
	2.10. FINALIZING THE MODULE

	CHAPTER 3. ADDING PUPPET MODULES TO RED HAT SATELLITE 6
	3.1. CREATING A CUSTOM PRODUCT
	3.2. CREATING A PUPPET REPOSITORY IN A CUSTOM PRODUCT
	3.3. UPLOADING A PUPPET MODULE TO A REPOSITORY
	3.4. REMOVING A PUPPET MODULE FROM A REPOSITORY
	3.5. ADDING PUPPET MODULES FROM A GIT REPOSITORY
	3.6. PUBLISHING A CONTENT VIEW
	3.7. CONFIGURING SMART VARIABLES FROM PUPPET CLASSES

	CHAPTER 4. CLIENT AND SERVER SETTINGS FOR CONFIGURATION MANAGEMENT
	4.1. CONFIGURING PUPPET ON THE RED HAT SATELLITE SERVER
	4.2. CONFIGURING PUPPET AGENT ON PROVISIONED SYSTEMS

	CHAPTER 5. APPLYING CONFIGURATION ON CLIENTS
	5.1. APPLYING CONFIGURATION ON CLIENTS DURING PROVISIONING
	5.2. APPLYING CONFIGURATION TO EXISTING CLIENTS

	CHAPTER 6. REVIEWING PUPPET REPORTS IN RED HAT SATELLITE 6
	APPENDIX A. REVISION HISTORY

